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A closed set on the circle (real line modulo 27) is a set of uniqueness (U-set)
if no nontrivial trigonometric series > % (a,cosnx + b,sinax) converges to zero
outside of the set. An alternative definition is the following: E is a U-set if we
bave limy, ., |7'(m)| > O for all pseudomeasures T # O carried by £ (a pseudo-
measure is a distribution T whose Fourier coefficients 7'(n) are bounded).
We shall say that E is a strong U-set if we have limy,_, |T(n)| = sup,|T(n)| for
all pseudomeasures 7 carried by E.

A closed set on the circle is a set of multiplicity (M-set) if it is not a set of
uniqueness. It is a set of multiplicity in the restricted sense (M -set) if it carries
a measure du # 0 whose Fourier coefficients fi(n) tend to zero at infinity
(31, I5D.

It was proved by IvaSev—-Musatov that no metric condition of a Hausdorff
type implies that a set is a U-set. Namely, given any positive function ${k)
tending to 0 when %2 — 0 (4> 0), there exists an M, set whose Hausdorff
measure with respect to the determining function ¢(%) vanishes [7].

‘We shall consider a metric condition of another type. Given a closed circular
set E, we write N, for the smallest number of closed intervals of length € whose
union contains E.

THEOREM 1. Iflim,_ o Neflogl/e =0, E is a strong U-set.

It is convenient to decompose the proof into two parts, and to introduce
the notion of a Dirichlet set. A closed set E on the circle will be called a
Dirichlet set if lim,,.,Sup,.g|sinnx| =0 (the classical Dirichlet theorem on
diophantine approximation implies that each finite set is a Dirichlet set).

1. Under the assumption of Theorem 1, E is a Dirichlet sef.

The proof (not the statement) can be found in [3], p. 95; it is due to Salem

2. A Dirichlet set E is a strong U-set.

Here we use an idea which is familiar in this field (I5], p. 345; [4]). Let I,
be the odd function defined by

I(x)=x when |x] < e
I(x)=2e—x when e < x < 2e
I(x)=0 when x > 2e.
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There exists an integral-valued function n,, tending to « when € — 0, such
that sup, .z |sinn x| < e. For each pseudomeasure I'# 0 carried by E, we have
T(@n) — T(0) = —2i{T, e~ "> I (sinn, x))

where <T, f'> is written for >2 _ T'(n) f (—n).
In the Banach space 4 of all functions fsuch that || £, = >%, | f ()| < e,
L (sinx) tends to zero as € — 0. The same is true for e™* [ (sinn,x). Therefore
lim |7(n) — T(0)| =0.

In the same way
lim [7n) — T(p)] =0
for each given p; therefore lim, | T'(n)| = sup, |T(p)|.
The condition given in Theorem 1 is the best possible, for we have the
following result in the opposite direction.

THEOREM 2. Given 8 > 0, there exists a closed circular set E such that (1°) it
carries a positive measure dy. of total mass 1 for which lim,,_.,|&(n)| < 3, and
(2°) N = O(log(1/e)) (e — 0).

The proof is a slight refinement of that of Theorem 2 in [2]. The idea is to
define E as a random set and du as a random measure, and to prove that the
conclusion holds almost surely.

Given p > 1 (to be defined later), we write r; = p~%’. Let F be the set of points

and do the measure

380+ 8r) * H(Bo+ 8,) * ... ¥ FBo + 8, ) % ..

F satisfies the condition N, = O(log(1/¢)) and do is the natural measure carried
by F. We write X(¢) = X(w, t) for the random function of the circular brownian
motion (that is, the Wiener function defined modulo 27). We define E and
du as the images of F and do by X(¢). We denote by £( ) the expectation of
a random variable.

Since

) = [ e du(x) = [ " do(y),
a series of simple computations gives
E(|pm)|*?)
n2
<(ph)? f11<t2<. .. <12, CXD (*5(12 ~hFl Lt — f:p~1)\) X
x do(ty). .. do(t,) '
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for each positive integer p [2]. Integrating first with respect o #,, #4,... 4, and
using the equalities

sup f e—(n2/2)tdc(t - S) = f e~ m/2) da(t) — ﬁ %(1 e e~(nz/2)rj) _ ‘b(n),
8 Jj=1

fircrszer. <t o) Aot . otz = .
we obtain
E(|m|*") < pIm)” < (o).
Given A > 0, large, let us suppose

2m+1

Ap?" < n < Ap?
We have

2 s
%(1 + e—(nZ/Z)rj) < %(1 € CXp (_%pzmﬂ_y))

forj=1,2,...m+ 1, and therefore

C
() < it

where C, ,is near 1 when A is large. From now on we suppose C, , < 2. We
choose p = p(n) = h2™; h is a negative power of 2 and will be defined later;
m is supposed to be large enough so that 2™ > 1. Then

E(pm)[*) < h?
and
IG’LH) i 2m+1 ~2\p
& (A S ) <A (ho7H)
p2M <n< Ap27t]
= Mp¥* k8 2P,
Given 8, we may define p and 4 in such a way that
pPPRE2 <,

Then we have

2 A8 (\[200D
(S P <
n=1
therefore
X A 2p(n)
Z “—g?—) ’ < o a.S.;

n=1

therefore limy, ., |fi(n)] < d a.s.
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For each ¢ >0, it is known that the function X(z) satisfies a Lipschitz
condition of order 4 — €. Since the set F satisfies N, = O(log(1/¢)), it follows
that E satisfies a. s. the same condition. This ends the proof of Theorem 2.

As a consequence of Theorem 1 and Theorem 2, a necessary and sufficient
condition on ¢(c) that N.= O(d()) implies that E is a strong U-set is
lim,_q¢(e)/log(1/€) = 0. The same holds if we consider Dirichlet sets instead
of strong U-sets.

The random set E constructed in the proof of Theorem 2 enjoys interesting
properties; for example, it is a. s. independent over the rationals [2]. We were
not able to prove that it is a. s. an M-set, nor to disprove it. It is easy to obtain
a random M -set by changing the definition of ;. We have

THEOREM 3. Given any function A(e) tending to « when e — 0, there exists
an M-set E such that N, = O(A(e)log(1/¢)) (e = 0).

We leave the verification to the reader (similar statements can be found in
[2]). Again, the set is a. s. independent.

As a consequence of Theorems 1 and 3, a necessary and sufficient condition on
() that N, = o(¢(€)) implies that E is a U-set is lim_ o d(e)/log(1/€) < co.
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