
when Ixl ~ E

when E~ x ~ 2E
when x): 2E.
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A Metric Condition for a Closed Circular Set
to be a Set of Uniqueness

University ofParis, Paris, France

A closed set on the circle (real line modulo 271") is a set of uniqueness (U-set)
ifno nontrivial trigonometric series L~ (ancosnx + bnsinnx) converges to zero
outside of the set. An alternative definition is the following: E is a U-set if we

have limlnl..."" It(n)j > 0 for all pseudomeasures T i= 0 carried by E (a pseudo­
measure is a distribution T whose Fourier coefficients T(n) are bounded).

We shall say that E is a strong U-set if we have limlnl"'"" IT(n) I = SUPn jT(n)1 for
all pseudomeasures T carried by E.

A closed set on the circle is a set of multiplicity (M-set) if it is not a set of
uniqueness. It is a set of multiplicity in the restricted sense (Mo-set) if it carries
a measure dfL i= 0 whose Fourier coefficients (l(n) tend to zero at infinity
((3], [5]).

It was proved by Ivasev-Musatov that no metric condition of a Hausdorff
type implies that a set is a U-set. Namely, given any positive function <p(h)
tending to 0 when h --+ 0 (h > 0), there exists an M o set whose Hausdorff
measure with respect to the determining function <p(h) vanishes [1].

We shall consider a metric condition ofanother type. Given a dosed circular
set E, we write N. for the smallest number ofclosed intervals oflength E whose
union contains E.

THEOREM 1. lflime-.oNE/log liE = 0, E is a strong U-set.

It is convenient to decompose the proof into two parts, and to introduce
the notion of a Dirichlet set. A closed set E on the circle will be called a
Dirichlet set if limn...""suPx"E Isinnxl = 0 (the classical Dirichlet theorem on
diophantine approximation implies that each finite set is a Dirichlet set).

1. Under the assumption ofTheorem 1, E is a Dirichlet set.
The proof (not the statement) can be found in [3], p. 95; it is due to Salem

2. A Dirichlet set E is a strong U-set.
Here we use an idea which is familiar in this field ([5], p. 345; (4). Let IE

be the odd function defined by

I.(x) = X

I.(x) = 2E-X
I.(x) = 0
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There exists an integral-valued function n" tending to 00 when E~ 0, such
that SUpxEE Isinn,xl < E. For each pseudomeasure T # 0 carried by E, we have

t(2n,) - teO) = -2i<T, e-in<x I.(sin n, x)

where <T,f) is written for 2~~-oo t(n)!(-n).
In the Banach space A of all functionsJsuch that IIJIIA = 2~oo \!(n)j < 00,

I.(sinx) tends to zero as E~ O. The same is true for ein<x I,(sinn,x). Therefore

lim It(n) - t(O)1 = o.

In the same way
lim It(n) - t(p)1 = 0

for each given p; therefore limn->oo It(n) I = suPp It(p)l.
The condition given in Theorem 1 is the best possible, for we have the

following result in the opposite direction.

THEOREM 2. Given 8 > 0, there exists a closed circular set E such that (10) it

carries a positive measure dp, oj total mass 1Jar which limln!->oo IjL(n) \ :::; 8, and
(2°) N, = O(lOg(1jE)) (E ~ 0).

The proof is a slight refinement of that of Theorem 2 in [2]. The idea is to
define E as a random set and dp, as a random measure, and to prove that the
conclusion holds almost surely.

Given p > 1 (to be defined later), we write rj = p-2i. Let Fbe the set ofpoints

and du the measure

-!(80+ 8'1) * -!-(80+ 8r2 ) * ... * -!(80+ 8r ) * ... ;
Fsatisfies the condition N, = O(log(1 jE)) and du is the natural measure carried
by F. We write X(t) = X(w, t)fortherandomfunction of the circular brownian
motion (that is, the Wiener function defined modulo 217). We define E and
dp, as the images of F and du by X(t). We denote by t9'( ) the expectation of
a random variable.

Since

jL(n) = f einx dp,(x) = f einX(t) duet),

a series of simple computations gives

t9'(1 jL(n) 1
2p)

:::; (p!)2 ft l <t2<.' .< t2p exp (-; (t2- t l + t4 - t3 + ... + t2p - t2P- I )) x

x du(t I) ... dU(t2p)
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for each positive integer p [2]. Integrating first with respect to t2, t4 , ••• t2l' and
using the equalities

s~p f e-(n2/2)t da(t +s) = f e-(n2/2)t da(t) = .D -to +e-(n2/2)ri ) = lj;(n),

ftl<t3<". <t2p_l da(t j ) da(t3) ••• da(t2l'_l ) = ~,
p.

we obtain
t&"(IJ£(n)1 2P) ~p!(lj;(n))P < (plj;(n))P.

Given A> 0, large, let us suppose

Ap2m ~ n < Ap2m+l.
We have

!(l + e-(n2/2)ri ) ~ ! (1 + exp (_~ p2m
+

L 2i
))

forj= I,2, ... m + 1, and therefore

where CA,l' is near 1 when A is large. From now on we suppose CA'l' < 2. We
choose p = pen) = h2m; h is a negative power of 2 and will be defined later;
m is supposed to be large enough so that h2m ~ 1. Then

t&"(IP(n)1 2l') ~ hP

and

t&"(l'2
m
";~Al'2m+l IP~n)12P) ~ 'Ap2

m
+\h 8-

2
)P

= A(p2/h h 8-2)P,

Given 8, we may define p and h in such a way that

p2/h h 8-2 < 1.
Then we have

(~ \p(n)12P(n») ,
t&" 6 81 < CXJ,

therefore

therefore limlnl->oo IP(n)1 ~ 3 a. s.
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For each E> 0, it is known that the function XU) satisfies a Lipschitz
condition of order t - E. Since the set F satisfies N. = O(log(ljE)), it follows
that E satisfies a. s. the same condition. This ends the proof of Theorem 2.

As a consequence of Theorem 1 and Theorem 2, a necessary and sufficient
condition on 1>(E) that N. = O(1)(E)) implies that E is a strong U-set is
lim....,o1>(E)jlog(1jE) = O. The same holds if we consider Dirichlet sets instead

of strong U-sets.
The random set E constructed in the proof of Theorem 2 enjoys interesting

properties; for example, it is a. s. independent over the rationals [2]. We were
not able to prove that it is a. s. an Mo-set, nor to disprove it. It is easy to obtain
a random Mo-set by changing the definition of r j • We have

THEOREM 3. Given any function A(E) tending to 00 when E -+ 0, there exists
an Mo-set E such that N. = O(A(E)log(IjE)) (E -+ 0).

We leave the verification to the reader (similar statements can be found in
[2]). Again, the set is a. s. independent.

As a consequence ofTheorems I and 3, a necessary andsufficient condition on
1>(E) that N. = O(1)(E)) implies that E is a U-set is lim....,o1>(E)jlog(1jE) < 00.
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