A Metric Condition for a Closed Circular Set to be a Set of Uniqueness

JEAN-PIERRE KAHANE

University of Paris, Paris, France

A closed set on the circle (real line modulo 2π) is a set of uniqueness (U-set) if no nontrivial trigonometric series $\sum_{0}^{\infty} (a_n \cos nx + b_n \sin nx)$ converges to zero outside of the set. An alternative definition is the following: E is a U-set if we have $\overline{\lim_{|n|\to\infty}} |\hat{T}(n)| > 0$ for all pseudomeasures $T \neq 0$ carried by E (a pseudomeasure is a distribution T whose Fourier coefficients $\hat{T}(n)$ are bounded). We shall say that E is a *strong U-set* if we have $\overline{\lim_{|n|\to\infty}} |\hat{T}(n)| = \sup_n |\hat{T}(n)|$ for all pseudomeasures T carried by E.

A closed set on the circle is a set of multiplicity (*M*-set) if it is not a set of uniqueness. It is a set of multiplicity in the restricted sense (M_0 -set) if it carries a measure $d\mu \neq 0$ whose Fourier coefficients $\hat{\mu}(n)$ tend to zero at infinity ([3], [5]).

It was proved by Ivašev-Musatov that no metric condition of a Hausdorff type implies that a set is a U-set. Namely, given any positive function $\phi(h)$ tending to 0 when $h \rightarrow 0$ (h > 0), there exists an M_0 set whose Hausdorff measure with respect to the determining function $\phi(h)$ vanishes [1].

We shall consider a metric condition of another type. Given a closed circular set E, we write N_{ϵ} for the smallest number of closed intervals of length ϵ whose union contains E.

THEOREM 1. If $\lim_{\epsilon \to 0} N\epsilon / \log 1/\epsilon = 0$, E is a strong U-set.

It is convenient to decompose the proof into two parts, and to introduce the notion of a Dirichlet set. A closed set E on the circle will be called a *Dirichlet set* if $\lim_{n\to\infty} \sup_{x\in E} |\sin nx| = 0$ (the classical Dirichlet theorem on diophantine approximation implies that each finite set is a Dirichlet set).

1. Under the assumption of Theorem 1, E is a Dirichlet set.

The proof (not the statement) can be found in [3], p. 95; it is due to Salem 2. A Dirichlet set E is a strong U-set.

Here we use an idea which is familiar in this field ([5], p. 345; [4]). Let I_{ϵ} be the odd function defined by

$$\begin{split} I_{\epsilon}(x) &= x & \text{when } |x| \leq \epsilon \\ I_{\epsilon}(x) &= 2\epsilon - x & \text{when } \epsilon \leq x \leq 2\epsilon \\ I_{\epsilon}(x) &= 0 & \text{when } x \geq 2\epsilon. \\ & 233 \end{split}$$

KAHANE

There exists an integral-valued function n_{ϵ} , tending to ∞ when $\epsilon \to 0$, such that $\sup_{x \in E} |\sin n_{\epsilon} x| < \epsilon$. For each pseudomeasure $T \neq 0$ carried by E, we have

$$\hat{T}(2n_{\epsilon}) - \hat{T}(0) = -2i\langle T, e^{-in\epsilon x} I_{\epsilon}(\sin n_{\epsilon} x) \rangle$$

where $\langle T, f \rangle$ is written for $\sum_{n=-\infty}^{\infty} \hat{T}(n) \hat{f}(-n)$.

In the Banach space A of all functions f such that $||f||_A = \sum_{-\infty}^{\infty} |\hat{f}(n)| < \infty$, $I_{\epsilon}(\sin x)$ tends to zero as $\epsilon \to 0$. The same is true for $e^{in\epsilon x} I_{\epsilon}(\sin n_{\epsilon} x)$. Therefore

$$\lim_{n\to\infty} |\hat{T}(n) - \hat{T}(0)| = 0.$$

In the same way

$$\lim_{n\to\infty} |\hat{T}(n) - \hat{T}(p)| = 0$$

for each given p; therefore $\overline{\lim_{n\to\infty}} |\hat{T}(n)| = \sup_p |\hat{T}(p)|$.

The condition given in Theorem 1 is the best possible, for we have the following result in the opposite direction.

THEOREM 2. Given $\delta > 0$, there exists a closed circular set E such that (1^0) it carries a positive measure $d\mu$ of total mass 1 for which $\overline{\lim_{|n|\to\infty}} |\hat{\mu}(n)| \leq \delta$, and $(2^0) N_{\epsilon} = O(\log(1/\epsilon)) (\epsilon \to 0)$.

The proof is a slight refinement of that of Theorem 2 in [2]. The idea is to define E as a random set and $d\mu$ as a random measure, and to prove that the conclusion holds almost surely.

Given $\rho > 1$ (to be defined later), we write $r_j = \rho^{-2j}$. Let F be the set of points

$$\sum_{j=1}^{\infty} \epsilon_j r_j \qquad (\epsilon_j = 0 \text{ or } 1)$$

and $d\sigma$ the measure

$$\frac{1}{2}(\delta_0+\delta_{r_1})*\frac{1}{2}(\delta_0+\delta_{r_2})*\ldots*\frac{1}{2}(\delta_0+\delta_{r_j})*\ldots;$$

F satisfies the condition $N_{\epsilon} = O(\log(1/\epsilon))$ and $d\sigma$ is the natural measure carried by *F*. We write $X(t) = X(\omega, t)$ for the random function of the circular brownian motion (that is, the Wiener function defined modulo 2π). We define *E* and $d\mu$ as the images of *F* and $d\sigma$ by X(t). We denote by $\mathscr{E}(\)$ the expectation of a random variable.

Since

$$\hat{\mu}(n) = \int e^{inx} d\mu(x) = \int e^{inX(t)} d\sigma(t),$$

a series of simple computations gives

 $\mathscr{E}(|\hat{\mu}(n)|^{2p}) \leq (p!)^2 \int_{t_1 < t_2 < \ldots < t_{2p}} \exp\left(-\frac{n^2}{2}(t_2 - t_1 + t_4 - t_3 + \ldots + t_{2p} - t_{2p-1})\right) \times d\sigma(t_1) \ldots d\sigma(t_{2p})$

234

for each positive integer p [2]. Integrating first with respect to t_2, t_4, \ldots, t_{2p} and using the equalities

$$\sup_{s} \int e^{-(n^{2}/2)t} d\sigma(t+s) = \int e^{-(n^{2}/2)t} d\sigma(t) = \prod_{j=1}^{\infty} \frac{1}{2} (1+e^{-(n^{2}/2)r_{j}}) = \psi(n),$$
$$\int_{t_{1} < t_{3} < \dots < t_{2p-1}} d\sigma(t_{1}) d\sigma(t_{3}) \dots d\sigma(t_{2p-1}) = \frac{1}{p!},$$

we obtain

 $\mathscr{E}(|\hat{\mu}(n)|^{2p}) \leq p \,! (\psi(n))^p < (p\psi(n))^p.$

Given $\lambda > 0$, large, let us suppose

$$\lambda \rho^{2^m} \leqslant n < \lambda \rho^{2^{m+1}}.$$

We have

$$\frac{1}{2}(1 + e^{-(n^2/2)r_j}) \leq \frac{1}{2}\left(1 + \exp\left(-\frac{\lambda^2}{2}\rho^{2^{m+1}-2^j}\right)\right)$$

for $j = 1, 2, \dots m + 1$, and therefore

$$\psi(n) \leq \frac{C_{\lambda,\rho}}{2^{m+1}}$$

where $C_{\lambda,\rho}$ is near 1 when λ is large. From now on we suppose $C_{\lambda,\rho} < 2$. We choose $p = p(n) = h2^m$; h is a negative power of 2 and will be defined later; m is supposed to be large enough so that $h2^m \ge 1$. Then

 $\mathscr{E}(|\hat{\mu}(n)|^{2p}) \leqslant h^p$

and

$$\mathscr{E}\left(\sum_{\lambda\rho^{2m}\leqslant n<\lambda\rho^{2m+1}}\left|\frac{\hat{\mu}(n)}{\delta}\right|^{2p}\right)\leqslant\lambda\rho^{2^{m+1}}(h\,\delta^{-2})^{p}$$
$$=\lambda(\rho^{2/h}\,h\,\delta^{-2})^{p}.$$

Given
$$\delta$$
, we may define ρ and *h* in such a way that

$$\rho^{2/h} h \, \delta^{-2} < 1.$$

Then we have

$$\mathscr{E}\left(\sum_{n=1}^{\infty}\left|\frac{\hat{\mu}(n)}{\delta}\right|^{2p(n)}\right) < \infty;$$

therefore

$$\sum_{n=1}^{\infty} \left| \frac{\hat{\mu}(n)}{\delta} \right|^{2p(n)} < \infty \qquad \text{a. s.;}$$

therefore $\overline{\lim_{|n|\to\infty}} |\hat{\mu}(n)| \leq \delta$ a. s.

KAHANE

For each $\epsilon > 0$, it is known that the function X(t) satisfies a Lipschitz condition of order $\frac{1}{2} - \epsilon$. Since the set F satisfies $N_{\epsilon} = O(\log(1/\epsilon))$, it follows that E satisfies a. s. the same condition. This ends the proof of Theorem 2.

As a consequence of Theorem 1 and Theorem 2, a necessary and sufficient condition on $\phi(\epsilon)$ that $N_{\epsilon} = O(\phi(\epsilon))$ implies that E is a strong U-set is $\lim_{\epsilon \to 0} \phi(\epsilon)/\log(1/\epsilon) = 0$. The same holds if we consider Dirichlet sets instead of strong U-sets.

The random set *E* constructed in the proof of Theorem 2 enjoys interesting properties; for example, it is a. s. independent over the rationals [2]. We were not able to prove that it is a. s. an M_0 -set, nor to disprove it. It is easy to obtain a random M_0 -set by changing the definition of r_i . We have

THEOREM 3. Given any function $A(\epsilon)$ tending to ∞ when $\epsilon \to 0$, there exists an M_0 -set E such that $N_{\epsilon} = O(A(\epsilon)\log(1/\epsilon))$ ($\epsilon \to 0$).

We leave the verification to the reader (similar statements can be found in [2]). Again, the set is a. s. independent.

As a consequence of Theorems 1 and 3, a necessary and sufficient condition on $\phi(\epsilon)$ that $N_{\epsilon} = o(\phi(\epsilon))$ implies that E is a U-set is $\lim_{\epsilon \to 0} \phi(\epsilon)/\log(1/\epsilon) < \infty$.

REFERENCES

- 1. O. S. IVAŠEV-MUSATOV, M-sets and Hausdorff measure (Russian). Dokl. Akad. Nauk. SSSR 142 (1962), 1001–1004.
- J.-P. KAHANE, Images browniennes des ensembles parfaits. C. R. Acad. Sci. Paris, Sér. A, 263 (1966), 613–615.
- 3. J.-P. KAHANE ET R. SALEM, "Ensembles parfaits et séries trigonométriques." Hermann, Paris, 1963.
- 4. N. VAROPOULOS, Sur les ensembles parfaits et les séries trigonométriques. C. R. Acad. Sci. Paris 270 (1965), 3831-3834.
- A. ZYGMUND, "Trignonmetric Series," Vol. I. Cambridge University Press, Cambridge, England, 1959.